Functional Representation of the Ablowitz–Ladik Hierarchy. II
نویسندگان
چکیده
In this paper we continue studies of the functional representation of the Ablowitz– Ladik hierarchy (ALH). Using formal series solutions of the zero-curvature condition we rederive the functional equations for the tau-functions of the ALH and obtain some new equations which provide more straightforward description of the ALH and which were absent in our previous paper. These results are used to establish relations between the ALH and the discrete-time nonlinear Schrödinger equations, to deduce the superposition formulae (Fay’s identities) for the tau-functions of the hierarchy and to obtain some new results related to the Lax representation of the ALH and its conservation laws. Using the previously found connections between the ALH and other integrable systems we derive functional equations which are equivalent to the AKNS, derivative nonlinear Schrödinger and Davey–Stewartson hierarchies.
منابع مشابه
ar X iv : s ol v - in t / 9 70 70 08 v 1 1 4 Ju l 1 99 7 Functional representation of the Ablowitz - Ladik hierarchy .
The Ablowitz-Ladik hierarchy (ALH) is considered in the framework of the inverse scattering approach. After establishing the structure of solutions of the auxiliary linear problems , the ALH, which has been originally introduced as an infinite system of difference-differential equations is presented as a finite system of difference-functional equations. The representation obtained, when rewritt...
متن کاملMatrix biorthogonal polynomials on the unit circle and non-abelian Ablowitz-Ladik hierarchy
In [13] Adler and van Moerbeke described a reduction of 2D-Toda hierarchy called Toeplitz lattice. This hierarchy turns out to be equivalent to the one originally described by Ablowitz and Ladik [1] using semidiscrete zero-curvature equations. In this paper we obtain the original semidiscrete zero-curvature equations starting directly from the Toeplitz lattice and we generalize these computatio...
متن کاملLocal Conservation Laws and the Hamiltonian Formalism for the Ablowitz–ladik Hierarchy
We derive a systematic and recursive approach to local conservation laws and the Hamiltonian formalism for the Ablowitz–Ladik (AL) hierarchy. Our methods rely on a recursive approach to the AL hierarchy using Laurent polynomials and on asymptotic expansions of the Green’s function of the AL Lax operator, a five-diagonal finite difference operator.
متن کاملCmv: the Unitary Analogue of Jacobi Matrices
Abstract. We discuss a number of properties of CMV matrices, by which we mean the class of unitary matrices recently introduced by Cantero, Moral, and Velazquez. We argue that they play an equivalent role among unitary matrices to that of Jacobi matrices among all Hermitian matrices. In particular, we describe the analogues of well-known properties of Jacobi matrices: foliation by co-adjoint or...
متن کاملMulti-hamiltonian Structure for the Finite Defocusing Ablowitz-ladik Equation
Abstract. We study the Poisson structure associated to the defocusing Ablowitz-Ladik equation from a functional-analytical point of view, by reexpressing the Poisson bracket in terms of the associated Carathéodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets which form a multi-Hamiltonian structure for the Ablowitz-Ladik equation. Furthermore...
متن کامل